
0

1

UNIT 1. LOOPS

Learning Objectives

At the end of the unit, the students are able to:

1. identify the loop or repetition structure;

2. identify the different elements of the loop;

3. differentiate the increment and decrement operators; and

4. create simple and complicated programs using loops.

 When writing C++ codes, there are times that you need to do a

statement or a block of statements more than once, twice, 5 times, 10

times or even hundred of times. For example, you are asked to display

your name and age on the screen 5 times, the following code will be part

of your C++ program.

cout<<”Matty T. Laucan 18”<<endl;

cout<<”Matty T. Laucan 18”<<endl;

cout<<”Matty T. Laucan 18”<<endl;

cout<<”Matty T. Laucan 18”<<endl;

cout<<”Matty T. Laucan 18”<<endl;

It is okay if the specific number of times is less than 10, but how

about if it is more than 10 times or a hundred times or a thousand times?

This will be a tedious job even for a seasoned programmer. C++ provides

a structure which will help you do repetitive tasks without typing them

over and over again. It is called the repetition structure or looping.

Another word for looping is iteration.

ELEMENTS OF LOOPING

 A loop will not function properly if one of its important elements is

missing.

1. Loop Control Variable (LCV)

The loop control variable will hold the value that will be

compared to the limit of the loop. This limit will determine when the

2

loop will end. The loop control variable should first be initialized

before it can be used in the program.

2. Sentinel Value (SV)

The sentinel value is the value where the loop control

variable will be compared to. This value will decide if the loop will

continue or stop based on the result of the comparison. The result

of the comparison is always a Boolean value, that is, true or a

false.

3. Loop update (LU)

Inside the loop, the value of the loop control variable must be

altered. This is called the loop update. You can change this value

by incrementing or decrementing.

The increment operator (++) adds 1 to its operand, and

the decrement operator (--) subtracts 1 from its operand. Thus:

x++;

which is the same as

x = x + 1;

will evaluate to 5 if the initial value of x is 4.

Similarly,

x--;

which is the same as

x = x - 1;

will evaluate to 10 if the initial value of x is 11.

Both the increment and decrement operators can either

precede (prefix) or follow (postfix) the loop control variable.

For example:

x = x + 1;

3

can be written as

++x;

or as

x++;

 The first is the prefix form and the second one is the postfix

form of the statement x = x + 1;

When an increment or decrement is used as part of an

expression, there is an important difference in using the prefix and

postfix forms. If you are using prefix form, the increment or

decrement will be done before evaluating the expression. And if

you are using postfix form, the increment or decrement will be done

after the complete expression is evaluated.

SAMPLE PROBLEM

 Create a C++ program that will display the postfix and

prefix increment values of a variable whose initial value is

21.

SAMPLE PROGRAM

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 int a = 21;
9 int c ;
10
11 c = a++;
12
13 cout << "Line 1 - Value of a++ is " << c << endl ;
14 cout << "Line 2 - Value of a is " << a << endl ;
15
16 c = ++a;
17
18 cout << "Line 3 - Value of ++a is " << c << endl ;
19
20 return EXIT_SUCCESS;
21 }

4

SAMPLE OUTPUT

Increment and decrement are not only for adding or

subtracting 1 from the current value of the loop control variable.

They can be any value you wish to add or subtract from the value

of the loop control variable. The following are examples of the

increment and decrement by other numerals aside from 1.

 int x = 5;

UPDATE CURRENT VALUE OF x

x = x + 2; 7

x -= 5; 2

x -= 9; -7

x += 2; -5

x += 10; 5

x -= 6; -1

x = x – 12; -13

x += 7; -6

x -= 14; -20

If you do not alter the loop control variable, it will result to an

infinite loop.

Line 1 – Value of a++ is 21
Line 2 – Value of a is 22
Line 3 – Value of ++a is 23

_

5

 An infinite loop is a loop which never stops. You have to be

careful so that you will not end up with an infinite loop.

 There are also loops that will not do anything which are called

empty loops. This happens when the comparison expression in

a for loop or a while loop evaluates to false even on the first try.

You have to make sure that the comparison expression will evaluate

to true at least once. What will be the good of using a loop if at

the first time that you compare the value of the loop control variable

to the sentinel value, it evaluates to false? The loop body will not

be executed and it will proceed to the statement right after the loop.

In this case, the loop structure will be like a design in your program

and does not do anything. There will be no sense in including this

type of loop in your program.

SAMPLE PROGRAM

#include <iostream>
#include <cstdlib>

using namespace std;

int main()
{
 int x;

 x = 10;
 while (x <= 6)
 {
 cout<<“CHOOBAH “;

 x--;
 }

 cout<<endl;
 cout<<“Nothing happened inside the loop”;

 return EXIT_SUCCESS;
}

6

SAMPLE OUTPUT

TYPES of LOOPS

1. for LOOP

2. while LOOP

3. do while LOOP

4. nested LOOP

THE for LOOP

A for loop is a repetition control structure that allows you to

efficiently write a loop that needs to execute a specific number of times.

The syntax of a for loop in C++ is:

for (initialization; comparison expression; update)

{

 statement(s);

}

Nothing happened inside the loop_

10

x

7

EXAMPLE

 for (x = 1; x <= 5; x++)

 {

 cout<<”*”;

 cout<<endl;

 }

FLOW OF CONTROL IN A for LOOP

1. The initialization of the loop control variable is executed first,

and only once. In here, the loop control variable is assigned with its

initial value.

2. The comparison expression is evaluated next. If it evaluates to

true, the body of the loop is executed. If it is false, the body of the

loop does not execute and the flow of control jumps to the next

statement just after the closing brace (}) of the for loop.

3. After the body of the for loop is executed, the flow of control jumps

back up to the update statement. This statement allows you to

update the loop control variable. The update can be an increment or

a decrement depending on the initial value of the loop control

variable, the comparison operator used and the sentinel value.

comparison of the loop

control variable to the

sentinel value
initialization of the loop

control variable

loop update

loop body

8

SAMPLE PROGRAM

SAMPLE OUTPUT

SIMULATION

o Line number 1 invokes the iostream header file which holds the

input/output commands of C++.

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 int x;
9
10 for (x = 1; x <= 5; x++)
11 {
12 cout<<x<<“ “;
13 }
14
15 cout<<endl;
16 cout<<“This is the code after the loop”;
17
18 return EXIT_SUCCESS;
19 }

1 2 3 4 5
This is the code after the loop_

6
5
4
3
2
1

x

9

o Line number 2 invokes the cstdlib library which will allow you to do

math operations, random number generation, dynamic memory

management and other C++ functions.

o Line number 4 allows the use of standard commands like cout, endl

without repeatedly typing std::.

o Line number 6 starts the main method of the program.

o On line number 8, the computer will allocate memory space for

variable x where the values that you will store should only be integer

values.

o Line number 10 sets the initial value of x to 1 (x = 1), then compare

the value of x if it is less than or equal to 5 (x <= 5). Since the

comparison evaluates to true, the code inside the loop body on line

number 12 will be executed (cout<<x<<” “). The value of x which

is 1 will be printed on the screen followed by a space.

o Next, x becomes 2 since (x++) will add 1 to the current value of x.

o The simulation goes back to the comparison expression where the

computer will evaluate the expression, 2 <= 5 which is true. It will

then execute the loop body and print the current value of x, which is

2, on the screen followed by a space.

o Next, x becomes 3.

o Comparing 3 <= 5 evaluates to true, so 3 will be printed followed by

a space.

o Next, x becomes 4.

o Comparing 4 <= 5 evaluates to true, so 4 will be printed followed by

a space.

o Next, x becomes 5.

o Comparing 5 <= 5 evaluates to true, so 5 will be printed followed by

a space.

o Next, x becomes 6.

o Comparing 6 <= 5 evaluates to false. In this instance, the execution

of the loop body will stop and the computer will execute the next lines

following the for loop.

o The computer will now print a newline (cout<<endl) found in line

number 15. Then, it will proceed to line number 16 which prints the

message (cout<<”This is the code after the loop”).

o Line number 18 will print a message that you have successfully

executed the program.

o Line number 19 ends the main method of the program.

10

Seatwork No. 1

I. EVALUATE THE VALUE OF THE FOLLOWING UPDATES.

CODE VALUE OF x

x = 11;

x += 13;

x = x - 23;

x -= 32;

x++;

x -= 2;

x--;

x = x + 6;

x += 17;

x -= 4;

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

11

Seatwork No. 2

SIMULATE THE FOLLOWING PROGRAM. USE THE SCREEN

FOR THE OUTPUT AND THE BOXES FOR THE MEMORY

ALLOCATIONS OF THE VARIABLES NEEDED. USE ONLY THE EXACT

NUMBER OF BOXES FOR THE DECLARED VARIABLES AND

DISREGARD THE REST OF THE BOXES.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

 int x;

 for (x = 10; x >= 6; x--)

 {

 cout<<x<<“ “;

 }

 cout<<endl;

 cout<<“FINISH”;

 return EXIT_SUCCESS;

 }

12

13

Seatwork No. 3

SIMULATE THE FOLLOWING PROGRAM. USE THE SCREEN FOR

THE OUTPUT AND THE BOXES FOR THE MEMORY ALLOCATIONS OF

THE VARIABLES NEEDED. USE ONLY THE EXACT NUMBER OF

BOXES FOR THE DECLARED VARIABLES.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

#include <iostream>
#include <cstdlib>

using namespace std;

int main()
{
 int x, square;

 for (x = 2; x <=10; x += 3)
 {
 square = x * x;

 cout<<square;
 }

 cout<<endl;

 square = 436;

 cout<<square<<endl<<endl;

 return EXIT_SUCCESS;

 }

14

15

Laboratory Exercise No. 1

MAKE A C++ PROGRAM THAT WILL PRINT THE OUTPUT ON

THE SCREEN USING for LOOP.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

PROGRAM CODE

5

10

15

20

25

30

35

40

16

Laboratory Exercise No. 2

 MAKE A C++ PROGRAM THAT WILL PRINT THE OUTPUT ON

THE SCREEN USING for LOOP.

HINT:

The numbers are

square values.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

#1 #4 #9 #16 #25

17

THE while LOOP

 Another form of loop is the while loop. Basically, it will do the

repetitive tasks assigned to it just like in a for loop. However, in a while

loop, the initialization of the loop control variable is typed before the

structure of the loop. The loop update on the other hand is placed inside

the loop body. The syntax of the while loop is given below.

initialization;

 while (comparison expression)

 {

 statement/s;

 loop update;

 }

EXAMPLE:

18

SAMPLE PROGRAM

SAMPLE OUTPUT

#include <iostream>
#include <cstdlib>

using namespace std;

int main()
{
 int x;

 x = 5;
 while (x >= 3)
 {
 cout<<x<<“ “;

 x--;
 }

 cout<<endl;
 cout<<“Loop has terminated”;

 return EXIT_SUCCESS;
 }

5 4 3
Loop has terminated_

2
3
4
5

x

19

SIMULATION

o Line number 6 starts the main method of the program.

o On line number 8, the computer will allocate memory space for

variable x where the values that you will store should only be integer

values.

o Line number 10 sets the initial value of x to 5 (x = 5).

o On line number 11, the value of x is compared if it is greater than or

equal to 3 (x >= 3). It will ask if 5 >= 3. Since the comparison

evaluates to true, the code inside the loop body on line number 13

will be executed (cout<<x<<” “). The value of x, which is 5, will be

printed on the screen followed by a space.

o Next, line number 15 will update the value of x and it will become 4

since (x--) will subtract 1 from the current value of x.

o The simulation goes back to the comparison expression where the

computer will evaluate the expression, 4 >= 3 which is true. It will

then execute the loop body and print the current value of x, which is

4, on the screen followed by a space.

o Next, x becomes 3.

o Comparing 3 >= 3 also evaluates to true, so 3, which is the current

value of x, will be printed followed by a space.

o Next, x becomes 2.

o Comparing 2 >= 3 evaluates to false. In this instance, the execution

of the loop body will stop and the computer will execute the next lines

following the for loop.

o The computer will now print a newline (cout<<endl) found in line

number 18. Then, it will proceed to line number 19 which prints the

message (cout<<”Loop has terminated”).

o Line number 21 will print a message that you have successfully

executed the program.

o Line number 22 ends the main method of the program.

20

LOOP UPDATE USING A PROMPT

There are also instances when the loop has no definite number of

times to execute, meaning, it will continue to do the iteration until such

time that the user of the program tells the program to stop the execution

of the looping process.

The loop update will be a question prompting the user if he wants

to continue or stop executing the loop. So, every time the user enters a

positive answer to the question, the loop body will be executed. It will

stop the execution of the loop body when it receives a negative response

to the question.

SAMPLE PROGRAM

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 char ans;
9
10 cout<<”Do you want to continue? (Y/N): “;
11 cin>>ans;
12
13 while (ans == ‘Y’)
14 {
15 cout<<”DERON”<<endl;
16 cout<<”Do you want to continue? (Y/N): “;
17 cin>>ans;
18 }
19
20 cout<<endl;
21 cout<<“Loop has terminated”;
22
23 return EXIT_SUCCESS;
24 }

21

SAMPLE OUTPUT

SIMULATION

o Line number 6 starts the main method of the program.

o On line number 8, the computer will allocate memory space for

variable ans where the values that you will store should only be

character values.

o Line number 10 prints the prompt on the screen (cout<<”Do you

want to continue? (Y/N): “;).

o On line number 11, the value entered in the prompt by the user will

be placed in variable ans.

o Line number 13 (while (ans == ‘Y’)) will compare if the value

entered by the user is Y.

o Since the value entered is Y, the loop body was executed. DERON was

printed on the screen followed by a newline, as the statement

(cout<<”DERON”<<endl;) instructed on line number 15.

o Line number 17 (cout<<”Do you want to continue? (Y/N): “;)

will print the prompt on the screen again and wait for the user to enter

a value.

o Variable ans will get the value entered in the prompt as instructed on

line number 18 (cin>>ans;) which is the character Y. This will serve

as the update of the loop.

o The execution of the code will go back to line number 13 and

compare if Y is equal to Y. Since the expression evaluates to true, the

loop body will again be executed and a new value for ans will be set

and the value of ans will again be compared to Y.

Do you want to continue? (Y/N): Y
DERON
Do you want to continue? (Y/N): Y
DERON
Do you want to continue? (Y/N): N

Loop has terminated_

N
Y
Y

ans

22

o Since the new value of ans is N, the loop terminates and the next line

following the loop will be executed. Line number 21 (cout<<endl;)

will print a new line on the screen.

o Next will be line number 22 (cout<<“Loop has terminated”;)

which will print the literal string on the screen.

o Line number 24 will print a message that you have successfully

executed the program.

o Line number 25 ends the main method of the program.

23

Seatwork No. 4

 MAKE A C++ PROGRAM USING while LOOP TO FIND THE

FACTORIAL OF A POSITIVE INTEGER ENTERED BY USER.

(Factorial of n = 1*2*3...*n).

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

24

Laboratory Exercise No. 3

MAKE A C++ PROGRAM THAT WILL PRINT THE OUTPUT ON

THE SCREEN USING while LOOP.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

1

16

49

100

169
AY AD TRI END ISKWEYRD DA SAM.

25

THE do while LOOP

 The do while loop functions just like a for loop or a while loop.

The only difference is that the comparison happens at the end of the do

while loop so the body of the loop is executed at least once even if the

comparison expression evaluates to false, unlike in the for loop and the

while loop where the comparison expression happens before the loop

body. This is the reason why, in the for and while loops, when the

comparison evaluates to false, the loop body will not be executed even

once. The structure of a do while loop is shown below.

initialization;

do

 {

 statement/s;

 loop update;

 } while (comparison expression);

EXAMPLE

26

SAMPLE PROGRAM

SAMPLE OUTPUT

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 int x;
9
10 x = 5;
11 do
12 {
13 cout<<x<<“ “;
14
15 x--;
16 } while (x >= 3);
17
18 cout<<endl;
19 cout<<“Loop has terminated”;
20
21 return EXIT_SUCCESS;
22 }

5 4 3
Loop has terminated_

2
3
4
5

x

27

SIMULATION

o Line number 6 starts the main method of the program.

o On line number 8, the computer will allocate memory space for

variable x where the values that you will place should only be integer

values.

o Line number 10 sets the initial value of x to 5 (x = 5). Line number

11 will start the do while loop.

o Line number 13 will be executed (cout<<x<<” “). The value of x

(5) will be printed on the screen followed by a space.

o Next, line number 15 will update the value of x and it will become 4

since (x--) will subtract 1 from the current value of x.

o Then, the comparison expression on line number 16 will be

executed, where the computer will evaluate the expression, 4 >= 3

which is true. It will then execute the loop body and print the current

value of x (4) on the screen followed by a space.

o Next, x becomes 3. Comparing 3 >= 3 evaluates to true, so, the

current value of x (3) will be printed followed by a space. Next x

becomes 2.

o Comparing 2 >= 3 evaluates to false. In this instance, the execution

of the loop body will stop and the computer will execute the next lines

following the for loop.

o The computer will now print a newline (cout<<endl) found in line

number 18. Then, it will proceed to line number 19 which prints the

message (cout<<”Loop has terminated”).

o Line number 21 will print a message that you have successfully

executed the program.

o Line number 22 ends the main method of the program.

28

Seatwork No. 5

 MAKE A C++ PROGRAM THAT WILL INPUT A NUMBER AND

DISPLAY THE SUM OF THE NUMBERS FROM 1 TO THE INPUT

NUMBER. BE GUIDED BY THE SAMPLE OUTPUT GIVEN. USE do

while LOOP.

HINT:

When you enter 6, your

program should add

1+2+3+4+5+6 which is

equal to 21.

When you enter 3, your

program should add

1+2+3 which is equal

to 6.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

Enter a no: 6

The sum is 21.

29

Laboratory Exercise No. 4

MAKE A C++ PROGRAM THAT WILL PRINT THE OUTPUT ON

THE SCREEN USING do while LOOP.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

5

6

7

8

9

10

30

NESTED LOOPS

 A nested loop is a loop within a loop. It is consisting of an outer

loop and an inner loop. The outer loop will be executed first. When the

evaluation of the comparison operators evaluates to true, the loop body

of the outer loop will be executed. Inside the body of the outer loop, the

inner loop is embedded. The inner loop executes and when the

comparison of the inner loop evaluates to true, the loop body of the inner

loop will be executed repeatedly until such time that the comparison

expression results to false. The inner loop terminates at this point and

the rest of the statements inside the loop body of the outer loop will be

executed. Then, the update of the outer loop will be performed and the

process will be repeated until the outer loop terminates.

 for (x = 1; x <= 5; x++)

 {

 for (y = 1; y <= 3; y++)

 {

 cout<<”*”;

 cout<<endl;

 }

 cout<<endl;

 }

 The number of times the nested loop will execute is equal to the

number of times the outer loop executes times the number of times the

inner loop executes.

tLoop = o * i;

 Let’s say that the outer loop will iterate 3 times (o) and the inner

loop will iterate 5 times (i), the total iteration will be 15.

outer loop

inner loop

31

SAMPLE PROGRAM

SAMPLE OUTPUT

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int main()
7 {
8 int x, y, loopCounter = 0;
9
10 for (x = 1; x <= 3; x++)
11 {
12 for (y = 1; y < 4; y++)
13 {
14 cout<<y<<“ “;
15
16 loopCounter++;
17 }
18
19 cout<<endl;
20 }
21
22 cout<<endl;
23 cout<<“This loop iterates “<<loopCounter<<” times.”<<endl<<endl;
24
25 return EXIT_SUCCESS;
26 }

4
3
2
1

x

4 4 4
3 3 3
2 2 2
1 1 1

y

1 2 3
1 2 3
1 2 3

This loop iterates 9 times.

_

5
4
3 9
2 8
1 7
0 6

loopCounter

32

SIMULATION

o Line number 6 starts the main method of the program.

o On line number 8, the computer will allocate memory spaces for

variable x, variable y and variable loopCounter which will hold integer

values only. It will also initialize loopCounter with a value of 0.

o Line number 10 sets the initial value of x to 1 (x = 1), then compare

the value of x if it is less than or equal to 3 (x <= 3). The answer will

be true.

o Line number 12 will then be executed setting the initial value of 1 to

variable y. Comparison comes next with (x < 4) which evaluates to

true.

o The inner loop body will be executed and from line number 14

(cout<<y<<” “), the value of y which is 1 will be printed on the

screen followed by a space.

o Line number 16 will add 1 to loopCounter, changing its value from

0 to 1.

o Next, y will become 2 since (y++) in line number 10 will add 1 to

the current value of x.

o The simulation goes back to the comparison expression where the

computer will evaluate the expression, 2 < 4 which is true. It will then

execute the loop body and print 2 on the screen and a space. 1 will

be again be added to the current value of loopCounter changing its

value to 2.

o Next, y becomes 3.

o Comparing 3 < 4 evaluates to true, so 3 will be printed followed by a

space. 1 will be again be added to the current value of loopCounter

changing its value to 3.

o Next y becomes 4.

o Comparing 4 < 4 evaluates to false. In this instance, the execution of

the inner loop body will stop and the computer will execute the next

lines following the for loop.

o The computer will now print a newline (cout<<endl) found in line

number 19.

o The outer loop body will finish on line number 20 and it will increment

variable x. So, from (x++) on line number 10, x will now have a

value of 2. It will then compare if 2 is less than or equal to 3 (x <=

3), which evaluates to true.

33

o Line number 12 up to Line number 20 will then be executed setting

again the initial value of 1 to variable y which is in the inner loop. The

comparison (y < 4) will evaluate to true and the body of the inner loop

will be executed 3x (Line number 13 to 17) printing 1 2 3 on the

screen and the value of loopCounter will be changed to 4, then 5,

then 6. When the value of y becomes 4, the inner loop will then stop

its execution since the comparison (y < 4) evaluates to false.

o The computer will now print a newline (cout<<endl) found in line

number 19.

o Variable x will now be updated again to 3 and the loop body of the

outer loop will be executed again.

o Line number 12 up to Line number 20 will again be executed setting

again the initial value of 1 to variable y which is in the inner loop. The

body of the inner loop will be executed 3x (Line number 13 to 17)

printing 1 2 3 on the screen and the value of loopCounter will be

changed to 7, then 8, then 9. When the value of y becomes 4, the

inner loop will then stop its execution since the comparison (y < 4)

evaluates to false.

o The computer will now print a newline (cout<<endl) found in line

number 19.

o Next x becomes 4.

o Comparing 4 <= 3 evaluates to false. In this instance, the execution

of the outer loop will stop and the computer will execute the next lines

following the outer loop.

o Then, it will proceed to line number 22 which prints a newline

(cout<<endl) and the message (cout<<”This loop iterates

“<<loopCounter<<” times”) from line number 23.

o Line number 25 will print a message that you have successfully

executed the program.

o Line number 26 ends the main method of the program.

34

Seatwork No. 6

 MAKE A C++ PROGRAM THAT WILL DISPLAY THE SAMPLE

OUTPUT USING nested LOOP.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

11 12 13 14 15
11 12 13 14
11 12 13
11 12
11

35

Laboratory Exercise No. 5

MAKE A C++ PROGRAM THAT WILL PRINT THE OUTPUT ON

THE SCREEN USING do while LOOP. (NOTE: THERE ARE NO SPACES

IN BETWEEN ROWS)

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

*

**

36

CHAPTER TEST
I. FILL-OUT THE CROSSWORD PUZZLE. THE NUMBER AFTER

THE CLUES CORRESPONDS TO THE NUMBER OF WORDS THE

ANSWER HAS.

Seat No.: _____________________ Rating: ________________

Name: _________________________ Date: _________________

37

ACROSS

1. Variable that controls the loop (3)

7. Increment or decrement (2)

8. The value where the lcv was compared to (2)

10. Increment or decrement after evaluation (1)

11. Increment or decrement before evaluation (1)

12. Loop within the loop (2)

14. Another term for looping or repetition structure (1)

15. A loop that never ends (2)

DOWN

2. Determines when the loop continues or ends (2)

3. Setting a first value to a variable (1)

4. True or false (2)

5. Loop that does nothing (2)

6. Increase the value of a variable (1)

9. Decrease the value of a variable (1)

13. A control structure that do a statement or a block of statements

a certain number of times (1)

II. WHAT IS THE DIFFERENCE BETWEEN A for AND A while LOOP

TO A do while LOOP.

38

III. WRITE A C++ PROGRAM THAT WILL PRINT THE OUTPUT

GIVEN. USE ANY COMBINATION OF nested LOOPS.

HINT:

THE OUTPUT HAS

SPACES BETWEEN

NUMBERS AND THE

PROGRAM MUST

HAVE 2 nested LOOPS.

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

39

UNIT 2. ARRAYS

Learning Objectives

At the end of the unit, the students are able to:

5. identify the array structure;

6. differentiate the different types of arrays; and

7. create simple and complicated programs using arrays.

An array is a series of elements with the same data type which are

placed in adjoining memory locations. Each element of an array can be

individually referenced by adding an index to the array’s identifier.

Let’s say that you are to use five quizzes of a student in a C++

program. In a regular C++ code, you have to declare each quiz with its

corresponding variable name. So, you will have to declare five variable

names for the five quizzes, for example:

int quiz1, quiz2, quiz3, quiz4, quiz5;

 Since the quizzes will be of the same type, say, int, you can use

an array to declare and use the quizzes. With an array declaration, you

can place the quizzes in adjoining memory locations and each quiz can be

accessed by calling the array name and its corresponding index. The

index represents the memory location of an element in an array. The first

element is always at index [0], therefore, the second will be at index

[1], the third at index [2] and so on. The syntax for the declaration of

an array is:

data_type array_name[no_of_elements];

where data_type is any valid data type such as int, float, short, char

and others, array_name is a valid identifier and the number of

elements enclosed in the open and close brackets signifies the length

of the array. The number of elements must be a constant value since

arrays are blocks of static memory whose size must be determined at

compile time, before the program runs.

40

 For an array of five quizzes, the declaration will be:

The compiler will allocate five adjoining memory locations for array

quiz.

0 1 2 3 4

quiz

In C++, the first element in an array is always numbered with a 0

(not a 1), no matter its length. So since array quiz have 5 elements, the

memory address starts with quiz[0] and ends with quiz[4].

INITIALIZING ARRAYS

 Usually, arrays are not initialized, meaning, they are not given

values in the declaration part of the code. But you can initialize arrays by

placing specific values when they are declared enclosed in opening and

closing braces. The syntax for initializing an array is:

dataType arrayName[no_of_elements] = {val1, val2,…, valn};

EXAMPLE:

int quiz[5] = {85, 75, 69, 81, 95};

 This initialization will cause the compiler to allot 5 adjoining

memory locations with the following values.

0 1 2 3 4

85 75 69 81 95

quiz

41

 The following shows the value of each element in the array.

quiz[0] = 85

quiz[1] = 75

quiz[2] = 69

quiz[3] = 81

quiz[4] = 95

 The number of values inside the braces MUST not be greater than

the length of array. If the number of values is less, the remaining

elements will have the default value of 0.

int quiz[5] = {85, 75, 69};

 This initialization will cause the computer to allot 5 adjoining

memory locations with the following values.

0 1 2 3 4

85 75 69 0 0

quiz

 The value of each element in the array will be like this:

quiz[0] = 85

quiz[1] = 75

quiz[2] = 69

quiz[3] = 0

quiz[4] = 0

 If the braces have no value inside, then the resulting memory

locations allotted will look like this:

0 1 2 3 4

0 0 0 0 0

quiz

42

and the value of each element in the array will be like this:

quiz[0] = 0

quiz[1] = 0

quiz[2] = 0

quiz[3] = 0

quiz[4] = 0

 Also, the brackets of the array can be empty, meaning that the

length of the array is not specified in the declaration. If this is the case,

the compiler will assume the number of values in the array as its length.

In this example:

int quiz[] = {85, 75, 69, 81};

the compiler will allot 4 memory locations for the array quiz.

0 1 2 3

85 75 69 81

 quiz

ARRAY VALUES

 Assigning the value of an element in an array is just like assigning

the value of any regular variable. The syntax to do this is:

array_name[index_no];

 For example,

choobah[3] = 32;

 will store the value 32 in the fourth element of the array choobah.

0 1 2 3 4

 32

choobah

43

 Since, the index of an array always starts with 0 and is therefore

the first element of the array, choobah[1] will be the second element,

choobah[2] is the third element, choobah[3] is the fourth element and

choobah[4] will be the fifth element.

 You can also transfer/copy the value of an array element into a

variable, let’s say,

a = choobah[3];

therefore, variable a will have a value of 32.

In C++, it is syntactically correct to exceed the valid range of

indices for an array, meaning you will not encounter an error message

when you compile your program. The problem will be on the output of the

code. For example,

x = choobah[6];

This code will not create an error during compilation but the error

will be seen during runtime.

At this point, it is important to be able to clearly distinguish between

the two uses that brackets [] have related to arrays. They perform two

different tasks: one is to specify the size of arrays when they are

declared;

int quiz[5];

and the second one is to specify indices for concrete array

elements when they are accessed.

a = quiz[3];

Do not confuse these two possible uses of brackets [] with arrays.

44

SAMPLE PROBLEM

 Make a C++ program that will add the values of an array with 5

elements.

SAMPLE PROGRAM

SAMPLE OUTPUT

0 1 2 3 4

23 21 45 8 7

num

#include <iostream>
#include <cstdlib>

using namespace std;

int main ()
{
 int num[] = {23, 21, 45, 8, 7};
 int x, sum=0;

 for (x=0 ; x<5 ; x++)
 {
 sum += num[x];
 cout<<sum<<endl;
 }

 cout <<”The sum is “<<sum;

 return EXIT_SUCCESS;
}

The sum is 104_

5
4
3
2
1

0

x

104
97
89
44
23

0

sum

45

Seatwork No. 7

 MAKE A C++ PROGRAM THAT WILL DISPLAY ALL THE

CONTENTS OF AN INTEGER ARRAY WITH A LENGTH OF 5. USE A

for LOOP. YOU SHOULD PROVIDE THE VALUES OF THE ARRAY.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

46

Seatwork No. 8

 MAKE A C++ PROGRAM THAT WILL DISPLAY THE SUM OF

THE VALUES OF AN INTEGER ARRAY WITH A LENGTH OF 6. THE

VALUES OF THE ARRAY WILL BE INPUT VALUES FROM THE USER.

USE for LOOPS.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

47

Laboratory Exercise No. 6

MAKE A C++ PROGRAM THAT WILL PRINT THE AVERAGE OF

THE VALUES OF AN ARRAY NAMED areas WITH VALUES {84, 76,

48} USING while LOOP.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

48

MULTIDIMENSIONAL ARRAYS

 A multidimensional array is an array of arrays. The most

common of which is a bi-dimensional array, a two-dimensional array

and can be imagined as a two-dimensional table made of elements with

the same data types.

 0 1 2 3 4

0

1

2

 deron

 This bi-dimensional array named deron is consists of 3 by 5

elements with data type int. To declare this array, the syntax is:

int deron[3][5];

To access the third element vertically and the second horizontally

of this sample array, use the following code:

deron[2][1];

 0 1 2 3 4

0

1

2

 deron

Multidimensional arrays are not limited to two indices (i.e., two

dimensions). They can contain as many indices as needed.

49

SAMPLE PROGRAM

#include <iostream>
#include <cstdlib>

using namespace std;

#define WIDTH 5
#define HEIGHT 3

int main ()
{
 int jimmy [HEIGHT][WIDTH];
 int n, m, x, y;

 for (n=0; n<HEIGHT; n++)
 {
 for (m=0; m<WIDTH; m++)
 {
 x = n + 1;
 y = m + 1;
 jimmy[n][m] = x * y;

 cout<<jimmy[n][m]<<” “;
 }

 cout<<endl;
 }

 return EXIT_SUCCESS;
}

50

SAMPLE OUTPUT

 0 1 2 3 4

0 1 2 3 4 5

1 2 4 6 8 10

2 3 6 9 12 15

jimmy

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

_

3

HEIGHT

5

WIDTH

3
2
1
0

n

5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 0 0

m

3
2
1

x

5 5 5
4 4 4
3 3 3
2 2 2
1 1 1

y

51

Seatwork No. 9

 MAKE A C++ PROGRAM THAT WILL CREATE A

MULTIPLICATION TABLE FROM 1 TO 10 USING

MULTIDIMENSIONAL ARRAYS.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

52

CHAPTER TEST

I. IDENTIFY THE FOLLOWING.

1. It is a series of elements with the same data type which are

placed in adjoining memory locations.

2. It is an array of arrays.

3. A two-dimensional array and can be imagined as a two-

dimensional table made of elements with the same data types.

__________ ______________________________

4. The number of elements enclosed in the open and close brackets

signifies the _______ of the array.

5. It represents the memory location of an element in an array.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

53

II. WRITE THE VALUE OF THE FOLLOWING. LABEL FIRST

THE INDICES OF THE ARRAY.

 1 12 85 15 42 95 11 77 52 56 17 32

 18 64 78 82 31 59 88 0 3 86 72 45

 99 25 75 16 33 54 19 10 44 38 66 69

 84 55 47 29 30 20 90 80 70 35 74 22

 65 23 61 4 7 8 6 15 37 57 67 60

 bato

bato[4][10] = __________

bato[3][11] = __________

bato[3][8] = __________

bato[1][5] = __________

bato[1][7] = __________

bato[3][6] = __________

bato[0][1] = __________

bato[2][9] = __________

bato[1][8] = __________

bato[4][5] = __________

III. WRITE THE INDICES OF THE FOLLOWING VALUES.

0 = _____________________

25 = _____________________

38 = _____________________

47 = _____________________

52 = _____________________

60 = _____________________

78 = _____________________

84 = _____________________

95 = _____________________

17 = _____________________

54

UNIT 3. FUNCTIONS

Learning Objectives

At the end of the unit, the students are able to:

1. identify a function structure;

2. identify the different parts of a function structure; and

3. create simple and complicated programs using functions.

 Functions are modules or segments of code that perform individual

tasks. In C++, a function is a group of statements that is given a name,

and which can be called from some point in the program. The most

common syntax to define a function is:

data_type function_name (parameter_1, ..., parameter_n)

{

statement_1;

statement_2;

.

.

.

statement_n;

 }

where:

The data_type is the type of data of the value that will be returned

by the function.

The function_name is the identifier by which the function can be

called.

The parameters can be as many as needed. Each parameter

consists of a data type followed by an identifier, with each parameter

being separated from the next by a comma. Each parameter looks very

much like a regular variable declaration (for example: int x), and in fact

acts within the function as a regular variable which is local to the function,

55

meaning it can only be used by the function. The purpose of parameters

is to allow the passing of arguments to the function from the location

where it is called from.

The statements consists the body of the function. It is a block of

statements surrounded by braces { } that specify what the function

actually does.

SAMPLE PROBLEM

Make a C++ program that will add two numbers using function.

SAMPLE PROGRAM

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int addi(int x, int y)
7 {
8 int r;
9
10 r = x + y;
11
12 return r;
13 }
14
15 int main ()
16 {
17 int sum;
18
19 sum = addi(10, 4);
20
21 cout << "The sum is " << sum<<endl;
22
23 return EXIT_SUCCESS;
24 }

Function call

56

SAMPLE OUTPUT

SIMULATION

o The main method starts in line number 15 and proceeds by declaring

variable sum with data type int at line number 17. The compiler will

allocate memory space for this variable.

o Next, variable sum will have the value passed by the function which

will be called in Line number 19. The values 10 will be passed to

variable x and 4 will be passed to variable y in function named addi

at Line number 6.

o Since the function was called, it will now be processed and in Line

number 8, variable r will be given a memory allocation. Line number

10 will add the value of x (10) and the value of y (4) and store that

value to r.

o The stored value will then be passed back to the main method and

stored in variable sum (still at Line number 19).

o Line number 21 will print the message “The sum is “followed by the

value of sum and a newline.

o Line number 24 ends the program.

The sum is 14

_

14

sum

10

x

4

y

14

r

57

You can also call the function a multiple number of times. The

argument of the function call is not limited to literal values only. It can

also be variables which hold the same data type as to the arguments of

the function.

SAMPLE PROGRAM

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 int subt (int a, int b)
7 {
8 int r;
9
10 r = a - b;
11
12 return r;
13 }
14
15 int main ()
16 {
17 int x=5, y=3, z, u, v, w;
18
19 z = subt (7,2);
20
21 cout<<"The first result is " <<z<<endl;
22
23 u = subt(15, 8);
24
25 cout<<"The second result is "<<u<<endl;
26
27 v = subt(x, y);
28
29 cout << "The third result is " <<v<<endl;
30
31 w = 40 + subt(x, y);
32
33 cout << "The fourth result is " <<w<< endl;
34
35 return EXIT_SUCCESS;
36 }

58

 In the sample program, the statement (z = subt (7,2);) calls the

function subt and passes the value 7 to variable a and the value 2 to

variable b. The function is then executed and 2 was subtracted from 7

and the result is 5 which was then stored in variable r. Next, the function

returns the value of r to the function call and stored in variable z.

 The next line of code in the main method was executed where the

following is printed on the screen:

The first result is 5

 On the statement following the last executed code, function subt

was called again and the value of 15 was passed to variable a and 8 to

variable b. The function subt was then executed and returned 7 which

was stored in variable u on the main method. The next line of output is:

The second result is 7

 Next statement was the call to function subt again, but this time,

the arguments are variables x and y. Since the value of x is 5, 5 was

passed to variable a and 3 was passed to variable b. Then this output

appeared on the screen.

The third result is 2

 The last function call passed the same values as the preceding

function call but this time, the returned value was added to 40 so the

display was

The fourth result is 42

59

void FUNCTIONS

 There are functions which do not return a value but only prints

messages on the screen. These are called void functions. Void functions

are created and used just like value-returning functions except they do

not return a value after the function executes. In lieu of a data type, void

functions use the keyword "void." A void function performs a task, and

then control returns back to the caller--but it does not return a value. You

may or may not use the return statement, as there is no return value.

Let’s say that you want to make a function which will print your

name and age on the screen.

SAMPLE PROGRAM

SAMPLE OUTPUT

1 #include <iostream>
2 #include <cstdlib>
3
4 using namespace std;
5
6 void message()
7 {
8 cout<<”Dayle Xylia”<<endl;
9 cout<<”18 years old<<endl<<endl;
10 }
11
12 int main ()
13 {
14 message();
15
16 return EXIT SUCCESS;
17 }

Dayle Xylia

18 years old

_

60

Function Overloading in C++

Function overloading is a feature of object-oriented
programming (OOP) where two or more functions can have the same

name but different parameters.

When a function name is overloaded with different jobs it is called

Function Overloading.

In C++, two or more functions can have the same name if any of

these conditions were met:

1. the number of parameters is different; and

2. the type of parameters passed is different based on its position.

These functions having the same name but different parameters

are known as overloaded functions. For example:

All of the four functions above are overloaded functions.

// same name different arguments

int sampleFunc()

{

}

int sampleFunc (int a)

{

}

float sampleFunc (double a)

{

}

int sampleFunc (int a, double b)

{

}

61

Notice that the return types of all these 4 functions are not the

same. Overloaded functions may or may not have different return types

but they must have different arguments. For example:

Here, both functions have the same name, the same type, and the

same number of arguments. Hence, the compiler will throw an error.

The problem is that C++ uses the parameter list to tell the

functions apart. But the parameter list of the two sampleFunc function

is the same in count and in type based on its position in the list. The

result is that C++ cannot tell these two routines apart and flags the

second declaration as an error.

To understand further look at the following sample pair of functions.

// Error code

int sampleFunc (int a)

{

}

float sampleFunc (int b)

{

}

// good code

int sampleTest(float a, int b)

{

}

float sampleTest (int b, float a)

{

}

// error code

int sampleTest (float a, int b)

{

}

float sampleTest (float m, int n)

{

}

62

Example 1: Overloading Using Different Types of Parameters

// Program to compute absolute value

// Works for both int and float

#include <iostream>

#include <cstdlib>

using namespace std;

// function with float type parameter

float absolute(float var)

{

 if (var < 0.0)

 var = -var;

 return var;

}

// function with int type parameter

int absolute(int var)

{

 if (var < 0)

 var = -var;

 return var;

}

int main()

{

 // call function with int type parameter

 cout << "Absolute value of -5 = " << absolute(-5) << endl;

 // call function with float type parameter

 cout << "Absolute value of 5.5 = " << absolute(5.5f) << endl;

 return EXIT_SUCCESS;

}

Output

Absolute value of -5 = 5

Absolute value of 5.5 = 5.5

63

In this program, we overload the absolute() function. Based on the

type of parameter passed during the function call, the corresponding

function is called.

64

Example 2: Overloading Using Different Number of Parameters

#include <iostream>

#include <cstdlib>

using namespace std;

// function with 2 parameters

void display(int var1, double var2)

{

 cout << "Integer number = " << var1;

 cout << " and double number = " << var2 << endl;

}

// function with double type single parameter

void display(double var)

{

 cout << "Double number = " << var << endl;

}

// function with int type single parameter

void display(int var)

{

 cout << "Integer number = " << var << endl;

}

int main()

{

 int a = 5;

 double b = 5.5;

 // call function with int type parameter

 display(a);

 // call function with double type parameter

 display(b);

 // call function with 2 parameters

 display(a, b);

 return EXIT_SUCCESS;

}

65

Output

Integer number = 5

Float number = 5.5

Integer number = 5 and double number = 5.5

Here, the display() function is called three times with different

arguments. Depending on the number and type of arguments passed,

the corresponding display() function is called.

The return type of all these functions is the same, but that need

not be the case for function overloading.

66

Note: In C++, many standard library functions are overloaded. For

example, the sqrt() function can take double, float, int, etc. as

parameters. This is possible because the sqrt() function is overloaded in

C++.

67

Seatwork No. 10

 JUMBLED WORDS. ARRANGE THE LETTERS TO FORM THE

NEEDED WORDS.

1. A module or segment of code that perform an individual task.

IF NOT C NU

2. There are functions which do not return a value but only prints

messages on the screen.

 SOUND OF VIC TIN

3. It is a block of statements surrounded by braces { } that specify

what the function actually does.

IN THE FFOOD BY COUNT

4. The purpose of these is to allow the passing of arguments to the

function from the location where it is called from.

MATS ARE REP

5. This is put in the body of the program to access the function.

U FILL CANTON C

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

68

Seatwork No. 11

 MAKE A C++ PROGRAM THAT WILL DISPLAY YOUR NAME,

AGE AND BIRTHDATE ON THE SCREEN USING A function.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

69

Laboratory Exercise No.7

MAKE A C++ PROGRAM THAT WILL PRINT THE AVERAGE OF

THE VALUES OF THREE QUIZZES USING function. THE VALUES OF

THE QUIZZES ARE INPUT VALUES FROM THE USER.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

70

Seatwork No. 12
 MAKE A C++ PROGRAM THAT WILL INPUT TWO NUMBERS

AND DISPLAY THE SUM OF THE NUMBERS. DO THIS FIVE TIMES.

USE function FOR THE COMPUTATION OF THE SUM.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

71

Laboratory Exercise No. 8

MAKE A C++ PROGRAM THAT WILL PRINT THE HIGHEST

NUMBER OF THE THREE INPUT NUMBERS USING A function.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

84

Seatwork No. 13

 MAKE A C++ PROGRAM THAT WILL DISPLAY NETPAY OF AN

EMPLOYEE BY INPUTTING THE basic pay AND overtime pay. IT

SHOULD COMPUTE FIRST THE gross pay WHICH IS THE SUM OF

THE INPUT VALUES AND THE tax WHICH IS 10% OF THE basic

pay. THE netpay IS grosspay MINUS tax. USE A function FOR

EACH COMPUTATION.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

85

Laboratory Exercise No. 8

Write a C++ Program with three functions in these conditions:

1. return type is void.

2. function name is display.

3. the 1st function has two parameters with an int type and

float type; when it is called it will print the phrase

“Integer number = ” with the inputted int value in the

parameter. In the second line, it will print the phrase

“and float number = ” with the inputted float value in

the parameter.

4. the 2nd function has one parameter with a float type;

when it is called phrase “float number = ” with the

inputted float value in the parameter.

5. the 3rd function has one parameter with an int type;

when it is called it will print the phrase “Integer number

= ” with the inputted int value in the parameter.

Sample output:

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

86

CHAPTER TEST

I. FIND THE LISTED WORDS BELOW WHICH ARE RELATED

TO FUNCTIONS AND THE SUBJECT CODE.

Seat No.: _____________________ Rating:________________

Name: _________________________ Date: _________________

FUNCTIONS DATATYPE FUNCTION NAME

VOID BRACES PARAMETERS

COMMA RETURN FUNCTION CALL

87

II. Make a C++ program that will input the first letter of a

shape (square, triangle, circle or rectangle). It should test

which area will be computed based on the input shape.

There should be an error message if the input value is not

one of the choices. Use a function for the computation of

the area of each shape. The needed value will be passed

through the function call, say for the area of the square,

the side which will be an input from the main function will

be passed to the function that will compute for the area of

the square. Use selection structure to determine the shape

of the area that will be computed.

